LECTURE NOTES: 4-4 INDETERMINATE FORMS AND L'HOSPITAL'S RULE (PART 1)

MOTIVATING EXAMPLES: Evaluate the Chapter 2 limits below, justifying each step:

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$$
 b) $\lim_{x \to 0} \frac{\sin x}{x}$

QUESTION 1: Determine whether or not l'Hospital's Rule applies to the MOTIVATING EXAMPLES (copied below) and if it does, apply it. Do you get the same answer?

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$$
 b) $\lim_{x \to 0} \frac{\sin x}{x}$

QUESTION 2: Why does l'Hospital's Rule work?

PRACTICE PROBLEMS: Evaluate the following limits.

1.
$$\lim_{x \to 0} \frac{\tan(5x)}{\sin(3x)}$$
 3. $\lim_{x \to 0} \frac{\cos(4x)}{e^{2x}}$

$$2. \lim_{u \to \infty} \frac{e^{u/10}}{u^2}$$

4.
$$\lim_{x \to 0} \frac{xe^x}{2^x - 1}$$

5. $\lim_{x \to 1^+} \left(\ln(x^4 - 1) - \ln(x^9 - 1) \right)$

6. $\lim_{x \to 0^+} \sqrt{x} e^{-x/2}$

 \star Articulate explicitly what *trick* was used to evaluate the last limit and state precisely what sort of limits this trick will apply to in general.